WinSEM��OLE Based Real-Time Device Interface�(Proposed)�� DATE * MERGEFORMAT �03/24/95�

Dan Mitchell�USDATA�dan_mitchell@usdata-richardson.ccmail.compuserve.com�(214) 680-9700

�
Table Of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc320698746 � PAGEREF _Toc320698746 �1��

2. Objective	� GOTOBUTTON _Toc320698747 � PAGEREF _Toc320698747 �2��

2.1 Symbolic Names	� GOTOBUTTON _Toc320698748 � PAGEREF _Toc320698748 �2��

2.2 Transfer of Data	� GOTOBUTTON _Toc320698749 � PAGEREF _Toc320698749 �2��

2.3 Standard Data Types	� GOTOBUTTON _Toc320698750 � PAGEREF _Toc320698750 �3��

2.4 Device Interface Configuration	� GOTOBUTTON _Toc320698751 � PAGEREF _Toc320698751 �3��

2.5 Error and Status Reporting	� GOTOBUTTON _Toc320698752 � PAGEREF _Toc320698752 �3��

3. Design Overview	� GOTOBUTTON _Toc320698753 � PAGEREF _Toc320698753 �4��

3.1 Local Server Device Object	� GOTOBUTTON _Toc320698754 � PAGEREF _Toc320698754 �4��

3.2 OLE Control Using OLE Device Object	� GOTOBUTTON _Toc320698755 � PAGEREF _Toc320698755 �4��

3.3 In-process Server Using Non-OLE Device Driver	� GOTOBUTTON _Toc320698756 � PAGEREF _Toc320698756 �5��

4. Symbolic Names	� GOTOBUTTON _Toc320698757 � PAGEREF _Toc320698757 �6��

4.1 Overview	� GOTOBUTTON _Toc320698758 � PAGEREF _Toc320698758 �6��

4.2 Tag Names	� GOTOBUTTON _Toc320698759 � PAGEREF _Toc320698759 �6��

4.3 Device Names	� GOTOBUTTON _Toc320698760 � PAGEREF _Toc320698760 �6��

5. The IRtDevice Interface	� GOTOBUTTON _Toc320698761 � PAGEREF _Toc320698761 �8��

5.1 Data Addressing	� GOTOBUTTON _Toc320698762 � PAGEREF _Toc320698762 �8��

5.2 Synchronous and Asynchronous Operations	� GOTOBUTTON _Toc320698763 � PAGEREF _Toc320698763 �8��

5.3 Time-outs	� GOTOBUTTON _Toc320698764 � PAGEREF _Toc320698764 �8��

5.4 Data Buffers	� GOTOBUTTON _Toc320698765 � PAGEREF _Toc320698765 �8��

5.5 Read	� GOTOBUTTON _Toc320698766 � PAGEREF _Toc320698766 �9��

5.6 Write	� GOTOBUTTON _Toc320698767 � PAGEREF _Toc320698767 �9��

5.7 Advise	� GOTOBUTTON _Toc320698768 � PAGEREF _Toc320698768 �9��

5.8 Un-Advise	� GOTOBUTTON _Toc320698769 � PAGEREF _Toc320698769 �10��

5.9 Receive Unsolicited	� GOTOBUTTON _Toc320698770 � PAGEREF _Toc320698770 �10��

5.10 Cancel Unsolicited	� GOTOBUTTON _Toc320698771 � PAGEREF _Toc320698771 �11��

5.11 Get Tag Handle	� GOTOBUTTON _Toc320698772 � PAGEREF _Toc320698772 �11��

5.12 Release Handle	� GOTOBUTTON _Toc320698773 � PAGEREF _Toc320698773 �11��

5.13 Get Data Type	� GOTOBUTTON _Toc320698774 � PAGEREF _Toc320698774 �11��

5.14 Get Data Length	� GOTOBUTTON _Toc320698775 � PAGEREF _Toc320698775 �12��

5.15 Enumerate Tags	� GOTOBUTTON _Toc320698776 � PAGEREF _Toc320698776 �12��

5.16 Register Callback Interface	� GOTOBUTTON _Toc320698777 � PAGEREF _Toc320698777 �12��

5.17 Release Callback Interface Handle	� GOTOBUTTON _Toc320698778 � PAGEREF _Toc320698778 �12��

5.18 Configure Device	� GOTOBUTTON _Toc320698779 � PAGEREF _Toc320698779 �13��

5.19 Send (Direct Access to Communications)	� GOTOBUTTON _Toc320698780 � PAGEREF _Toc320698780 �13��

6. IRtCallback Interface	� GOTOBUTTON _Toc320698781 � PAGEREF _Toc320698781 �14��

6.1 Read Complete	� GOTOBUTTON _Toc320698782 � PAGEREF _Toc320698782 �14��

6.2 Write Complete	� GOTOBUTTON _Toc320698783 � PAGEREF _Toc320698783 �14��

6.3 Advise Update	� GOTOBUTTON _Toc320698784 � PAGEREF _Toc320698784 �14��

6.4 Unsolicited Data	� GOTOBUTTON _Toc320698785 � PAGEREF _Toc320698785 �15��

6.5 Send Complete	� GOTOBUTTON _Toc320698786 � PAGEREF _Toc320698786 �15��

7. Data Read and Write Using OLE Automation	� GOTOBUTTON _Toc320698787 � PAGEREF _Toc320698787 �16��

7.1 Read Method	� GOTOBUTTON _Toc320698788 � PAGEREF _Toc320698788 �16��

7.2 Write Method	� GOTOBUTTON _Toc320698789 � PAGEREF _Toc320698789 �16��

7.3 Advise Method	� GOTOBUTTON _Toc320698790 � PAGEREF _Toc320698790 �16��

7.4 Un-Advise Method	� GOTOBUTTON _Toc320698791 � PAGEREF _Toc320698791 �17��

7.5 Receive Unsolicited Method	� GOTOBUTTON _Toc320698792 � PAGEREF _Toc320698792 �17��

7.6 Cancel Unsolicited Data Method	� GOTOBUTTON _Toc320698793 � PAGEREF _Toc320698793 �17��

7.7 Device Name Property	� GOTOBUTTON _Toc320698794 � PAGEREF _Toc320698794 �17��

7.8 Tag Name Property	� GOTOBUTTON _Toc320698795 � PAGEREF _Toc320698795 �17��

7.9 Data Value Property	� GOTOBUTTON _Toc320698796 � PAGEREF _Toc320698796 �18��

7.10 Data Type Property	� GOTOBUTTON _Toc320698797 � PAGEREF _Toc320698797 �18��

7.11 Data Length Property	� GOTOBUTTON _Toc320698798 � PAGEREF _Toc320698798 �18��

7.12 Read Complete Event	� GOTOBUTTON _Toc320698799 � PAGEREF _Toc320698799 �18��

7.13 Write Complete Event	� GOTOBUTTON _Toc320698800 � PAGEREF _Toc320698800 �18��

7.14 Advise Update Event	� GOTOBUTTON _Toc320698801 � PAGEREF _Toc320698801 �18��

7.15 Unsolicited Data Event	� GOTOBUTTON _Toc320698802 � PAGEREF _Toc320698802 �19��

8. Data Types	� GOTOBUTTON _Toc320698803 � PAGEREF _Toc320698803 �20��

9. Status and Error Reporting	� GOTOBUTTON _Toc320698804 � PAGEREF _Toc320698804 �21��

�

�
Introduction

Typically, application software is “monolithic” in that all the functions of the application are linked together. Internally, the software may be constructed in a modular fashion, but the end user is not provided with a way to incorporate additional modules into the application. The need for a means to rapidly construct complex, yet flexible, software systems has lead the software industry to move towards a component software model.

Component software is built through the combination of independent software components, much like a component stereo system. A component is a reusable piece of software that can be “plugged into” other components from other vendors with relatively little effort. Component software is a form of object-oriented software that is applied at the application level and not just at a programming level.

In order for component software systems to become a reality, a standard interface that defines how components communicate is needed. OLE provides a standard interface as well as the infrastructure needed to build new interfaces.

Currently, each software package for use in industrial and laboratory automation applications implements its own device interface software. This often makes it difficult, if not impossible, to use various packages together. For example, a PLC programming system is incompatible with an MMI from another vendor. Thus, PLC data points that are defined in the programming system must be redefined in the MMI system. Although some effort has been made to integrate the various systems through the use of import/export files, there is no easy way for the user to combine the packages into an easy to use solution.

In addition, there is a great deal of duplication of effort. Device interface software must be implemented uniquely for each vendor’s software. With a common interface, different software systems could coexist and share the device interface components.

�
Objective

This specification describes a standard interface for transfer of data with an external device. The types of devices covered are those typically used for scientific, engineering, and manufacturing applications. The specification covers the following areas:

Symbolic names

Transfer of data

Standard data types

Device interface configuration

Error and status reporting

Symbolic Names

A symbolic name provides a device independent way to represent data and device types and addresses. The use of symbolic names to identify devices and data sets provides greater device independence and also allows for better integration of application programs. The same symbolic name can be used in all applications that refer to a specific device or data, thus reducing the effort need to make changes in device or data addressing.

Transfer of Data

The primary operations on a device are read and write. From the standpoint of the client, a read transfers data from the device to the client while a write transfers data from the client to the device.

Read and write operations may be divided into two primary types: polled and exception. In a polled operation, the client invokes a function on the device each time it wants to read or write data. In an exception operation, the client invokes a function on the device that causes the device to periodically update the client when data changes (or on a regular basis) without further requests from the client.

A polled operation may be further divided into blocking (synchronous) or non-blocking (asynchronous). In a blocking read or write operation, the client makes the request and then waits until the request is complete, an error occurs, or a time-out period expires. In a non-blocking request, the client issues the request and then later receives a notification that the operation has completed. A non-blocking operation is similar to an exception operation with the main difference being that the exception operation provides for continued notification without further requests.

In order to be useful in a real-time application, data transfer must be high-speed. Although the term “high-speed” varies by context, it generally means that data transfer time should be minimal.

Standard Data Types

Each device may use different binary representations of values. In order for client software to be device independent, a standard list of data types is needed. The device object is responsible for converting data to the standard data types.

Device Interface Configuration

A device may need special configuration, such as I/O address, device sub-type, communications parameters, etc. The standard should provide a way for a client to pass device configuration information to the device without having to understand the specifics of the device.

Error and Status Reporting

Common error conditions should be reported the same for all devices. However, since each device may have additional, device specific error conditions, a way is needed to convert error and status codes into messages for logging and display to the user.

�
Design Overview

This section describes how the device interface standard can be used to provide access to the device.

Local Server Device Object

The external device is represented by a COM object that supports a special interface for real-time devices. The following diagram shows the architecture:

� EMBED ShapewareVISIO10 ���

A new interface, IRtDevice, is provided that defines the methods available on the device object. The client object obtains an IRtDevice interface pointer on the device object using the standard OLE object functions (e.g. OleCreate, QueryInterface). The client then issues requests through the IRtDevice interface.

For asynchronous operations, the client object passes a handle to a callback interface, IRtCallback. This interface is used by the device object to notify the client that the operation has completed.

Optionally, the device object can support access through OLE Automation (IDispatch). This allows read and write requests through an interpreted programming language such as Visual Basic.

The server should be able to support multiple instances of a device. This allows more than one application to read and write the same device. This is not to say how the server implements multiple access. It could do this by returning an “alias” of a single device object to each client, or it could create multiple “virtual” devices internally, or it could do something else altogether.

OLE Control Using OLE Device Object

In addition to device access, the device object may support other interfaces defined by OLE. In general, however, it is better to isolate the device interface functions from editing and display functions. Handling user interface elements can potentially have an adverse affect on the device interface’s performance. The following figure shows an architecture using an OLE Control (or other InProc server) that acts as a “front-end” to the device..

� EMBED ShapewareVISIO10 ���

This design provides for the use of higher level objects that provide different means of access to the device. In some situations, it may be more appropriate to view the data from the device as a data stream, similar to the WOSA/XRT mechanism. In this case, a stream object would sit between the client and the device object and provide the stream packing and unpacking functions. In a similar manner, the higher level object may provide a structured data format that represents a physical or logical operation such as a PID loop controller, valve, pump, etc.

In-process Server Using Non-OLE Device Driver

It is also possible to implement the IRtDevice interface as an in-process server that then makes calls to a non-OLE interface to the device driver. The device driver may exist as a separate process that is accessed through some IPC mechanism other that OLE, or, the device driver may be implemented as a loadable device (e.g. DLL, VxD) that is accessed through a direct function call. In either case, the OLE object translates the IRtDevice interface into the appropriate calls to the device driver.

� EMBED ShapewareVISIO10 ���

�
Symbolic Names

Overview

The use of symbolic names to identify devices and data sets provides greater device independence and also allows for better integration of application programs. The same symbolic name can be used in all applications that refer to a specific device or data, thus reducing the effort need to make changes in device or data addressing. Two types of symbolic names are defined:

Tags

Devices

Tag Names

A Tag represents a data point address or a set of addresses to be transfered as a block. Each Tag has a name, device type, device data type, host data type, address and length. The device data type and address are device specific text strings that are interpreted by the device object. The length indicates the number of values the symbolic name represents. In addition, the Tag name definition may include other device specific information

The terms “address” and “device type” are used loosely to mean whatever information is needed to locate and interpret the data. The address may be a PLC register, an I/O port, network node, IPC information, etc, or something completely unique to the device.

Typically, a Tag name represents an array of values where each value is the same type. This allows for efficient transfer of blocks of data (i.e. data tables) to and from a PLC-like device. However, it is possible to allow the Tag to represent a data structure if both the device object and the client understand the data structure format. This can be accomplished by having a type library entry in the tag definition. The client can query the type library in order to interpret the data structure. The device object can also use the address information entry to identify the Tag as a structured data type. This standard does not develop a mechanism for interpreting structured data.

Since the definition of Tag names is specific to each device, this standard does not define how or where the Tag name definitions are stored. Part of the interface to the device provides the means for client software to determine the list of valid names and their types and lengths. How the device object manages this information is implementation specific.

Device Names

A Device name represents one physical or logical device. Each Device is represented by a name, type, address and CLSID. The type and address information is used by the device object to determine how to access the device. The CLSID entry defines the OLE object class that supports this device. In addition, the device name definition may include other device specific information.

Symbolic names representing devices are stored in the registration database under the key \HKEY_CLASSES_ROOT\WinSEM in the following manner:

� EMBED Visio.Drawing.3 ���An application can determine the devices available on the system by opening the registration database and then enumerating all “Name” entries under the key \HKEY_CLASSES_ROOT\WinSEM\Devices. The entries under the “Name” key are described below.

Type	The “Type” key identifies the type of the device. The value for this key is device dependent. Typically, the type will be the manufacturer’s name, model, version, etc. This entry is optional.

Address	The “Address” key identifies information needed by the device object to locate the physical device. This entry is optional.

CLSID	The “CLSID” key identifies the OLE class that the client should instantiate in order to perform operations on this device. This entry is required.

Tags	The “Tags” key provides information to the device object on where symbolic names for data items are located. The actual location and format of the tag definition is device dependent. This entry is optional.

Device Specific	In addition to the above, a device object may require device specific information that it needs in order to perform operations on the device. The registration keys and format of the values is specific to each implementation.

�
The IRtDevice Interface

The IRtDevice interface is a custom OLE interface that defines the services provided by the device object.

Data Addressing

Several of the functions in the IRtDevice require a data item address. Each address is represented by a symbolic name (Tag) as described above. In order to avoid the overhead of translating the symbolic name into device specific information on each operation, the IRtDevice uses a “handle” to represent the address to operate on. The handle is acquired using the IRtDevice::GetTagHandle function. When no more operations need to be performed on the address, the client must release the handle by invoking the IRtDevice::ReleaseHandle function.

Synchronous and Asynchronous Operations

The IRtDevice interface provides for both synchronous and asynchronous read and write operations. When a read or write function is invoked, the client can pass a callback handle to the function. If this handle is NULL, then the operation is considered to be synchronous and the device object will complete the operation before returning to the client.

When the callback handle is non-NULL, the operation is considered to be asynchronous. In this case, the device object will schedule the operation and return immediately to the caller. When the operation completes, the device object will invoke the appropriate function on the callback object.

Callbacks are handled through the IRtCallback interface (see below for a full description). In order to avoid the overhead of marshaling the IRtCallback interface pointer for each call to the device object, the IRtDevice interface provides a way to register the callback interface pointer with the device object. The device object returns a handle that can be used to reference the cached interface pointer.

Time-outs

The read and write operations include parameters that allow the caller to specify a time-out value for the operation. Time-out values are specified in milliseconds. If the time-out value is greater than zero, the device object will not spend more than the indicated length of time processing the request. If a request takes longer than the specified time, the device object will cancel the operation and return a status of RTDEV_E_TIMEOUT.

Data Buffers

Data is transferred between the client and device object through a variable length buffer. The contents of the buffer are defined by the type and length of the data.

Note: How do we implement timestamps? One option is for the caller to supply a second, optional buffer for storage of timestamps. This buffer could be for a timestamp per entry or could be a single value where the timestamp represents the entire read operation. Another strategy is to put the timestamps after the data, or, intermixed with the data. Whether or not timestamps are included is indicated by a flag in the Tag definition for the address. Yet another possibility is to have a “read with timestamp” function.

Read

HRESULT IRtDevice::Read(itemid, bsize, buffer, type, timeout, callback)�DWORD itemid;�DWORD bsize;�BYTE buffer[];�DWORD timeout,�DWORD callback;�

Parameter�
Use�
�
itemid�
handle representing the data address�
�
bsize�
size of the data buffer in bytes�
�
buffer�
buffer for data transfer�
�
timeout�
maximum time to wait for read to complete�
�
callback�
handle to callback interface for asynchronous operations. If the callback handle is NULL, the request is synchronous.�
�
The Read function retrieves data from the device.

For an asynchronous operation, the call returns immediately. When the read operation is completed, the client is notified through the callback interface. For an asynchronous operation, the data buffer is ignored since the data will be provided through the callback interface.

Write

HRESULT IRtDevice::Write(itemid, bsize, buffer, type, timeout, callback)�DWORD itemid;�DWORD bsize;�BYTE buffer[];�DWORD timeout,�DWORD callback;�

Parameter�
Use�
�
itemid�
handle representing the data address�
�
bsize�
size of the data buffer in bytes�
�
buffer�
buffer for data transfer�
�
timeout�
maximum time to wait for write to complete�
�
callback�
handle to callback interface for asynchronous operations. If the callback handle is NULL, the request is synchronous.�
�
The Write function sends data to the device.

For an asynchronous operation, the call returns immediately. When the write operation is completed, the client is notified through the callback interface.

Advise

HRESULT IRtDevice::Advise(itemid, rate, callback, adviseid)�DWORD itemid;�DWORD rate,�DWORD callback;�DWORD *adviseid;�

Parameter�
Use�
�
itemid�
handle representing the data address�
�
rate�
rate to poll for changes. (Where applicable)�
�
callback�
handle to callback interface for notification of new data.�
�
adviseid�
pointer to location to store the id representing the advise�
�
The Advise function makes a request to monitor the indicated address for changes. When the value(s) change, the client is notified through the callback routine. An Advise function is similar to an asynchronous read except that the device object continues to watch for changes in the data.

The device object can implement an Advise in a number of ways. For example,

The device object may keep an internal buffer and compare new values with old values and only notify the client when one or more values have changed.

The device object may implement the Advise by scanning the device at a regular interval and notifying the client at the end of each scan.

Which method of implementation is chosen is dependent on the device type.

Un-Advise

HRESULT IRtDevice::UnAdvise(adviseid)�DWORD adviseid;�

Parameter�
Use�
�
adviseid�
identifier returned by Advise�
�
The UnAdvise function cancels a request to monitor the indicated address for changes.

Receive Unsolicited

HRESULT IRtDevice::ReceiveUnsolicited(itemid, callback, unsolid)�DWORD itemid;� DWORD callback;�DWORD *unsolid;�

Parameter�
Use�
�
itemid�
handle representing the symbolic name�
�
callback�
handle to callback interface for notification of received data.�
�
unsolid�
pointer to location to store the id�
�
The ReceiveUnsolicited function indicates to the device object that the client wishes to receive any unsolicited data identified with the address given by itemid.

Not all devices support unsolicited data. In those cases, the device object should return the OLE errror E_NOTIMPL to indicate that unsolicited data is not available.

Cancel Unsolicited

HRESULT IRtDevice::CancelUnsolicited(unsolid)�DWORD unsolid;�

Parameter�
Use�
�
unsolid�
identifier returned by ReceiveUnsolicited�
�
The CancelUnsolicited function cancels a request to monitor the indicated address for unsolicited data.

Get Tag Handle

HRESULT IRtDevice::GetTagHandle(name, itemid)�LPOLESTR name,�DWORD *itemid;�

Parameter�
Use�
�
name�
character string containing the symbolic name.�
�
itemid�
pointer to location to store the handle representing the symbolic name�
�
This function returns a handle for the given name. The handle is used during calls to the read, write and advise functions.

Release Handle

HRESULT IRtDevice::ReleaseHandle(itemid)�DWORD itemid;�

Parameter�
Use�
�
itemid�
handle representing a symbolic name that was returned by GetTagHandle�
�
This function releases a handle obtained from GetTagHandle.

Get Data Type

HRESULT IRtDevice::GetDataType(itemid, type)�DWORD itemid;�DWORD *type;�

Parameter�
Use�
�
itemid�
handle representing a symbolic name�
�
type�
pointer to location to store the type�
�
This function returns the host type that best represents the device data type. On Read and Advise operations, the device object will convert the device data to this data type. On Write operations, the device object will expect the data buffer to contain data of this type.

Get Data Length

HRESULT IRtDevice::GetDataLength(itemid, type)�DWORD itemid;�DWORD *length;�

Parameter�
Use�
�
itemid�
handle representing a symbolic name�
�
length�
pointer to location to store the length�
�
This function returns the number of values for the given data item.

Enumerate Tags

HRESULT IRtDevice::EnumTags(penum)�IEnumString **penum;�

Parameter�
Use�
�
penum�
pointer to where the enumerator is returned�
�
This function returns a pointer to a string enumerator that can be used to enumerate the Tags defined for this device.

Register Callback Interface

HRESULT IRtDevice::RegisterCallback(callback, handle)�IRtCallback *callback;�DWORD *handle;�

Parameter�
Use�
�
callback�
Pointer to an IRtCallback interface�
�
handle�
Pointer to location where handle to the registered interface is returned.�
�
The RegisterCallback function is used to store a callback interface pointer in the server. The handle returned by this call is passed as an argument to the Read, Write and Advise functions. By registering the callback interface with the server, the interface pointer only needs to be “marshaled” once thereby reducing the overhead of making a call to the Read and Write functions.

Release Callback Interface Handle

HRESULT IRtDevice::ReleaseCallback(handle)�DWORD handle;�

Parameter�
Use�
�
handle�
Handle returned by RegisterCallback�
�
This function releases the callback interface handle obtained through a call to RegisterCallback.

Configure Device

HRESULT IRtDevice::ConfigureDevice(device)�LPOLESTR device;�

Parameter�
Use�
�
device�
Symbolic name of the device�
�
This function configures the device. The symbolic name for the device is used to locate the information concerning the type of device and its address. The device name must match an entry in the registration database.

Send (Direct Access to Communications)

HRESULT IRtDevice::Send(isize, inbuf, osize, outbuf, timeout, callback)�DWORD isize;�BYTE inbuf[];�DWORD osize;�BYTE outbuf[];�DWORD timeout;�DWORD callback;�

Parameter�
Use�
�
isize�
Size of the input buffer�
�
inbuf�
input buffer containing the packet to send�
�
osize�
size of the output buffer�
�
outbuf�
output buffer for returned packet�
�
timeout�
maximum time to wait for operation to complete�
�
callback�
handle to callback function�
�
This function sends the packet in the input buffer to the physical device. Any response packet is placed in the output buffer. The output buffer may be null. The callback parameter (if non-null) can be used for asynchronous requests.

This function is provided for applications (e.g. PLC programming systems) that may need direct access to the device for the purpose of sending special device specific commands. Implementation of this function is optional since it may have no meaning for certain devices.

�
IRtCallback Interface

The IRtCallback interface is implemented by the client and is used to receive notifications from the device object.

The “status” parameter contains the value that would have been returned from a synchronous operation.

Read Complete

void IRtCallback::ReadComplete(status, itemid, bsize, buffer)�HRESULT status;�DWORD itemid;�DWORD bsize;�BYTE buffer[];�

Parameter�
Use�
�
status�
Status of the operation�
�
itemid�
Item handle used for this read�
�
bsize�
Size of the data buffer�
�
buffer�
Data buffer�
�
The ReadComplete function is invoked at the end of an asynchronous read operation. The data that was read is passed in the buffer.

Write Complete

void IRtCallback::WriteComplete(status, itemid)�HRESULT status;�DWORD itemid;

Parameter�
Use�
�
status�
Status of the operation�
�
itemid�
Item handle used for this read�
�
The WriteComplete function is invoked at the end of an asynchronous write operation.

Advise Update

void IRtCallback::AdviseUpdate(status, itemid, advid, bsize, buffer)�HRESULT status;�DWORD itemid;�DWORD advid;�DWORD bsize;�BYTE buffer[];�

Parameter�
Use�
�
status�
Status of the operation�
�
itemid�
Item handle used for this read�
�
advid�
Advise id returned from the advise call�
�
bsize�
Size of the data buffer�
�
buffer�
Data buffer�
�
The AdviseUpdate function is invoked when new data is available as a result of the client having called the IRtDevice::Advise function. The data that was read is passed in the buffer.

Unsolicited Data

void IRtCallback::UnsolicitedData(status, itemid, unsolid, bsize, buffer)�HRESULT status;�DWORD itemid;�DWORD unsolid;�DWORD bsize;�BYTE buffer[];�

Parameter�
Use�
�
status�
Status of the operation�
�
itemid�
Item handle used for this read�
�
unsolid�
Unsolicited data id returned from the ReceiveUnsolicited call�
�
bsize�
Size of the data buffer�
�
buffer�
Data buffer�
�
The UnsolicitedData function is invoked when new data is available as a result of the device having sent unsolicited data for the address identified by the itemid. The data that was received is passed in the buffer.

Send Complete

void IRtCallback::SendComplete(status, bsize, buffer)�HRESULT status;�DWORD bsize;�BYTE buffer[];�

Parameter�
Use�
�
status�
Status of the operation�
�
bsize�
Size of the data buffer�
�
buffer�
Data buffer�
�
The SendComplete function is invoked at the end of an asynchronous send operation. The data that was received is passed in the buffer.

�
Data Read and Write Using OLE Automation

In order to provide direct access from interpreted languages, the device object should support an IDispatch interface implementation. This implementation mirrors the IRtDevice interface.

Because the data buffer used to transfer values may represent one of a variety of types, a buffer parameter to the read and write operations is not easy to implement. Instead, the strategy used here is to provide a “Value” property that can be accessed to set and get the data values. For example, to perform a read, the user of the object would first invoke the Read method, then query the Value property once for each value. A similar strategy is used for Write and Advise.

If the device object is implemented as a Local or Remote server, the IDispatch interface may be implemented as an InProc server or OLE Control that acts as a “front end” to the device object.

The functions of the IRtCallback interface are implemented as “events” rather than by passing a pointer to the callback interface.

Device Name Property

Syntax

obj.DeviceName = “Device”

The DeviceName property is analogous to the IRtDevice::ConfigureDevice function. The name specified must be one of those listed in the registration database under \WinSEM\Devices. The DeviceName property must be set before any other properties or methods can be used.

Tag Name Property

Syntax

obj.TagName = “Tagname”

The Tag name property is used to set the symbolic name for the next read, write or advise request. Setting this property is analogous to calling IRtDevice::GetTagHandle. Setting the TagName property to an empty string is equivalent to IRtDevice::ReleaseHandle.

Data Value Property

Syntax:

value = obj.Value(index)�obj.Value(index) = value

The Value property is used to set and get values for read, write and advise operations. The index parameter indicates the item offset to set or get. The index values start with one.

Internally, the device object may need to maintain separate read and write buffers. For this reason, a write to the Value property followed by a read will not necessarily return the value just written.

Until a Read, Advise, or Unsolicited request is made on the device, the value of this property is undefined.

Data Type Property

Syntax:

value = obj.DataType

The DataType property returns the type of the data for the currently selected item. The Tag name property must be set before this property can be read. This property is read-only.

Data Length Property

Syntax:

value = obj.DataLength

The DataLength property returns the number of values associated with the object. This is the largest index that can be used as a subscript on the Value property. The Tag name property must be set before this property can be read. This property is read-only.

Read Method

Syntax

result = obj.Read(timeout, asynch)

The Read method is used to read values from the device and is analogous to IRtDevice::Read. The TagName property must be set before calling Read.

The timeout parameter specifies the maxium amount of time, in milliseconds, to wait for the request to complete.

If the asynch parameter is non-zero, the Read method performs an asynchronous request. When the request is finished, the ReadComplete event is signaled.

Write Method

Syntax

result = obj.Write(timeout, asynch)

The Write method is used to write values to the device and is analogous to IRtDevice::Write. The TagName property must be set before calling Read.

The timeout parameter specifies the maxium amount of time, in milliseconds, to wait for the request to complete.

If the asynch parameter is non-zero, the Write method performs an asynchronous request. When the request is finished, the WriteComplete event is signaled.

Advise Method

Syntax

result = obj.Advise(rate)

The Advise method is used to initiate an advise operation and is analogous to calling the IRtDevice::Advise function. The TagName property must be set before calling Advise.

The rate parameter specifies the rate, in milliseconds, at which the device should check for changes in values. On some devices, this value may be ignored.

Un-Advise Method

Syntax

result = obj.UnAdvise()

The UnAdvise method is used to cancel the current advise operation.

Receive Unsolicited Method

Syntax

result = obj.ReceiveUnsolicited()

The ReceivedUnsolicited method is used to signal that the client wishes to receive and unsolicited data for the currently specified tag name. The TagName property must be set before calling ReceiveUnsolicited.

Cancel Unsolicited Data Method

Syntax

result = obj.CancelUnsolicited()

The CancelUnsolicited method is used to cancel reception of any unsolicited data.

Read Complete Event

Syntax:

ReadComplete(status);

The ReadComplete event signals that an asynchronous read is complete. The status of the operation is contained in the status parameter. The data may be read from the Value property.

Write Complete Event

Syntax:

WriteComplete(status);

The ReadComplete event signals that an asynchronous read is complete. The status of the operation is contained in the status parameter.

Advise Update Event

Syntax:

AdviseUpdate(status);

The AdviseUpdate event signals that new data is available from an advise request. The status of the operation is contained in the status parameter. The data may be read from the Value property.

Unsolicited Data Event

Syntax:

UnsolicitedData(status);

The AdviseUpdate event signals that new data is available from an advise request. The status of the operation is contained in the status parameter. The data may be read from the Value property.

�
Data Types

The device supports conversion to the following data types. This is list from the IEC 1131-3 standard.

Data Type�
IEC Definition (Bits)�
OLE Variant Type�
�
BOOL�
Boolean (1)�
VT_BOOL�
�
SINT�
Short Integer (8)�
VT_I1�
�
INT�
Integer (16)�
VT_I2�
�
DINT�
Double Integer (32)�
VT_I4�
�
LINT�
Long Integer (64)�
VT_I8�
�
USINT�
Unsigned Short Integer (8)�
VT_UI1�
�
UINT�
Unsigned Integer (16)�
VT_UI2�
�
UDINT�
Unsigned Double Integer (32)�
VT_UI4�
�
ULINT�
Unsigned Long Integer (64)�
VT_UI8�
�
REAL�
Real Number (32) (per IEC 559)�
VT_R4�
�
LREAL�
Long Real Number (64) (IEC 559)�
VT_R8�
�
TIME�
Duration (*)�
VT_R8�
�
DATE�
Date (*)�
VT_DATE�
�
TIME_OF_DAY�
Time of day (*)�
VT_FILETIME�
�
DATE_AND_TIME�
Date and time of day (*)�
N/A�
�
STRING�
Variable length character string(*)�
VT_BSTR�
�
BYTE�
Bit string (8)�
VT_UI1�
�
WORD�
Bit string (16)�
VT_UI2�
�
DWORD�
Bit string (32)�
VT_UI4�
�
LWORD�
Bit string (64)�
VT_UI8�
�
* Size is implementation dependent

In addition, IEC 1131-3 has user defined derived types, enumerations, structures and arrays.

Under OLE, user defined data types can be handled through a type library.

�
Status and Error Reporting

In addition to the standard OLE errors, the device object may generate the following error codes.

RTDEV_E_UNDEFNAME�(0x80040200)�
Undefined Name. The name supplied is not defined in the registration database.�
�
RTDEV_E_INVHANDLE�(0x80040201)�
Invalid Handle.�
�
RTDEV_E_INVDATATYPE�(0x80040202)�
Invalid Data Type. The data type specified in the registration database entry is not valid for this device.�
�
RTDEV_E_TYPEMATCH�(0x80040203)�
Mismatch in Data types. The device data type cannot be converted to the specified host data type and vice-versa.�
�
RTDEV_E_INVADDRESS�(0x80040204)�
Invalid Address. The address specified in the registration database is not valid for this device.�
�
RTDEV_E_TIMEOUT�(0x80040205)�
Time-out. A request did not succeed within the time specified.�
�
RTDEV_E_DEVNOTAVAIL�(0x80040206)�
Device Not Available. The device cannot be used (i.e. off line, etc.)�
�
RTDEV_E_DEVNOTEXIST�(0x80040207)�
Device Does Not Exist The requested device does not exist. (i.e. the network address is invalid, I/O port invalid, no device at specified address, etc.)�
�
RTDEV_E_COMMERROR�(0x80040208)�
Communications Error.�
�
RTDEV_E_BUFFEROVERFLOW�(0x80040209)�
Data Buffer Overflow (too small). The data buffer supplied is not large enough to hold the requested number of values.�
�
RTDEV_E_INVPARAM�(0x8004020A)�
Invalid Parameter. Some other error with a parameter to a function.�
�
RTDEV_E_DEVERROR�(0x8004020B)�
Device specific error.�
�
All values are 32 bit values laid out to conform to the OLE error code format. The severity code is ERROR (1), the facility code is FACILITY_ITF (4) and the codes begin at 0x200.

The OLE 2.02 specification contains new interfaces (ICreateErrorInfo, IErrorInfo, ISupportErrorInfo) for conversion of HRESULT to a text string. It is suggested that all device object implementations also implement these interfaces for display of error messages.

�
Appendix A - IDL for IRtCallback and IRtDevice

import "unknwn.idl";

import "objidl.idl";

[

	object,

	uuid(f1eb93a0-637e-11ce-b23b-02608ca34a2a),

	pointer_default(unique)

]

interface IRtCallback : IUnknown

{

	void ReadComplete(

		[in] HRESULT status,

		[in] DWORD itemid,

		[in] DWORD bsize,

		[in, size_is(bsize)] BYTE buffer[]);

	void WriteComplete(

		[in] HRESULT status,

		[in] DWORD itemid);

	void AdviseUpdate(

		[in] HRESULT status,

		[in] DWORD itemid,

		[in] DWORD advid,

		[in] DWORD bsize,

		[in, size_is(bsize)] BYTE buffer[]);

	void UnsolicitedData(

		[in] HRESULT status,

		[in] DWORD itemid,

		[in] DWORD unsolid,

		[in] DWORD bsize,

		[in, size_is(bsize)] BYTE buffer[]);

	void SendComplete(

		[in] HRESULT status,

		[in] DWORD bsize,

		[in, size_is(bsize)] BYTE buffer[]);

}

[

	object,

	uuid(24e02fa0-5a3d-11ce-b23b-02608ca34a2a),

	pointer_default(unique)

]

interface IRtDevice : IUnknown

{

	HRESULT Read(

		[in] DWORD itemid,

		[in] DWORD bsize,

		[out, size_is(bsize)] BYTE buffer[],

		[in] DWORD timeout,

		[in] DWORD callback);

	HRESULT Write(

		[in] DWORD itemid,

		[in] DWORD bsize,

		[in, size_is(bsize)] BYTE buffer[],

		[in] DWORD timeout,

		[in] DWORD callback);

	HRESULT Advise(

		[in] DWORD itemid,

		[in] DWORD timeout,

		[in] DWORD callback,

		[out] DWORD *advid);

	HRESULT UnAdvise(

		[in] DWORD advid);

	HRESULT ReceiveUnsolicited(

		[in] DWORD itemid,

		[in] DWORD callback,

		[out] DWORD *unsolid);

	HRESULT CancelUnsolicited(

		[in] DWORD unsolid);

	HRESULT GetTagHandle(

		[in] LPOLESTR item,

		[out] DWORD *itemid);

	HRESULT ReleaseHandle(

		[in] DWORD itemid);

	HRESULT GetDataType(

		[in] DWORD itemid,

		[out] DWORD *type);

	HRESULT GetDataLength(

		[in] DWORD itemid,

		[out] DWORD *length);

	HRESULT EnumTags(

		[out] IEnumString **penum);

	HRESULT RegisterCallback(

		[in] IRtCallback *callback,

		[out] DWORD *handle);

	HRESULT ReleaseCallback(

		[in] DWORD handle);

	HRESULT ConfigureDevice(

		[in] LPOLESTR name);

	HRESULT Send(

		[in] DWORD isize,

		[in, size_is(isize)] BYTE inbuf[],

		[in] DWORD osize,

		[out, size_is(osize)] BYTE outbuf[],

		[in] DWORD timeout,

		[in] DWORD callback);

}

�
Appendix B - ODL Type definition

#include <olectl.h>

[uuid(7C7CDF03-6515-11CE-B23B-02608CA34A2A), version(1.0),

 helpstring("Devctl OLE Custom Control module")]

library DevctlLib

{

	importlib(STDOLE_TLB);

	importlib(STDTYPE_TLB);

	// Primary dispatch interface for CDevctlCtrl

	[uuid(7C7CDF01-6515-11CE-B23B-02608CA34A2A),

	 helpstring("Dispatch interface for Devctl Control")]

	dispinterface _DDevctl

	{

		properties:

			[id(1)] BSTR TagName;

			[id(2)] BSTR DeviceName;

			[id(3)] long DataLength;

			[id(4)] long DataType;

		methods:

			[id(11), propget] VARIANT Value(long index);

			[id(11), propput] void Value(long index, VARIANT newValue);

			[id(5)] long Read(long timeout, boolean asynch);

			[id(6)] long Write(long timeout, boolean asynch);

			[id(7)] long Advise(long rate);

			[id(8)] long UnAdvise();

			[id(9)] long ReceiveUnsolicited();

			[id(10)] long CancelUnsolicited();

	};

	[uuid(7C7CDF02-6515-11CE-B23B-02608CA34A2A),

	 helpstring("Event interface for Devctl Control")]

	dispinterface _DDevctlEvents

	{

		properties:

			// Event interface has no properties

		methods:

			[id(1)] void ReadComplete(long status);

			[id(2)] void WriteComplete(long status);

			[id(3)] void AdviseUpdate(long status);

			[id(4)] void UnsolicitedData(long status);

	};

	[uuid(7C7CDF00-6515-11CE-B23B-02608CA34A2A),

	 helpstring("Devctl Control")]

	coclass Devctl

	{

		[default] dispinterface _DDevctl;

		[default, source] dispinterface _DDevctlEvents;

	};

};

Requirements Specification		p. �PAGE�2�

Version 1 (�TIME \@ "MMMM d, yyyy"�March 23, 1995�)		USDATA®

© 1992, United States Data Corporation, All Ri
